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COMPUTER SIMULATION OF BOUNDED PLASMA SYSTEMS

William S. Lawson

Abstract

The physical and numerical problems of kinetic simulation of a bounded electrostatic plasma

system in one planar dimension are examined, and solutions to them are presented. These problems

include particle absorption, reflection and emission at boundaries, the solution of Poison's equation

under non-periodic boundary conditions, and the treatment of an external circuit connecting the

boundaries. Some comments are also made regarding the problems of higher dimensions. The

methods which are described here are implemented in a code named PDWl,,which is available from

Professor C. K. Birdsal, Plasma Theory and Simulation Group, Cory Hall, University of California,

Berkeley, CA 94720.

Introduction

In recent years, many plasma simulation problems have become of interest which are not sa-

tiaily periodic. These problem include (i) devices, such as magnetic mirrors [1], Q-machines [2],

and double-plasma machines, (ii) spatial effects such as wave damping and mode conversion, (its)

boundaries between different plasm.. as in double layers, and (is) theory problems such as the

Pierce diode [3]. Over the past twenty years, many non-periodic simulations have been performed

(Birdsal and Bridges [4], and Burger [5,6] are some early examples), but no systematic account of

the problems involved in these simulations has been published. The purpose of this article is to

begin to fill this void.

The methods described here were implemented in the computer code PDWI, and have been

used succemfuilly since 1983 by members of the Berkeley Plasma Theory and Simulation group

(some examples are [7-10]). (PDW is an acronym for our 1983 Plasma Device Workshop.) The

code is doc- -iented, and set up to run on the CRAY-I computers of the National Magnetic Fusion

Energy Computer Center. The code and documentation is available from the Plasma Theory and

Simulation group at the University of California, Berkeley [11]. Some of the work to be presented

here has already been published as part of Chapter 16 of Birdsall and Langdon [12]. Most of the
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points are expanded upon here, but some points are more fully explained in [12] (particle injection,

for example). Chapter 15 of [12] (discussing the work done on Langdon's ZOHAR code) is also very

relevant to the work presented here. (Reference [12] is a good reference for particle simulation in

generaL)

The incorporation of boundaries into the simulation of a one-dimensional plasma introduces

new cosiderations of both physical and numerical origin. Theme consideratio may be grouped into

three broad categories the iteraction of particles with the boundries, the solution of Poisson's

equation with non-periodic boundary conditions, and the inclusion of an cternal circuit connecting

the bounding planes. The external circuit has received almost no attention in the past, but is a real

part of any physical model Even an open circuit is non-trivial, = the boundaries themselves form a

capacitor. A series RLC circuit with both AC and DC voltage sources (also in seris) in considered

here. More complicated circuits ae, of course, possible, but will not be discussed.

Each of these categories present problems which are not difficult to solve, but do require some

care. This article will explore these problems category by category, and present solutions.

Model

Before considering the problems of simulating a io n plama, it is worth drawing

attention to some of the features of the one-dimensional model itself. First of all, it is important to

note that the electric field of a particle (which represents a charge sheet in three diensmious) does

not fall off with distance, but rather is constant. One consequence of this is that it is impossible to

define a unique ground potential at infinity as is possible in three dimensions. The point chosen to

be at zero potential in completely arbitrary. It may be designated in a circuit diagram as a ground

symbol, but it should be remembered that there really is no ground for charge to flow to or from.

It might seem as if such an artificial model would be of little use in describing reality, but in any

situation in which the variations along two axes is thought to be unimportant, the one-dimensional

model is applicable. One dimensional periodic simulations have been used successfully for almost

thirty years on wave problems, and non-periodic simulations show equal promise. Nor are one-

dimensional simulations limited to one velocity dimension. Only the variatwn of quantities in the

perpendicular directions is required to be zero. Three velocity dimensions and a constant magnetic

field in an arbitrary direction have already been implemented in PDWI, and fully electromagnetic

1-d Fimulations have been implemented elsewhere.
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Because electric field of a particle in one dimension does not fall off with distance, there is no

functional differmce between a boundary between two regions of a plasma and a boundary between

a plasma and a conducting wall (or between a plasma and anything else) aside from the particle

emision from the boundary. This is very different from the situations in two and three dimensions.

In one dimension, any information a particle carries beyond a boundary is of no interest regardless

of the nature of the region beyond the boundary because the electric field due to the particle will be

the same whether it is located on that boundary or infinitely far beyond it. To illustrate, in Fig. 1,

diagrams (a) and (b) have the same solution for the region 0 < z < L if and onld if the particles

which eater the simulation region fom the boundaries are the same. Put more simply, particles

which are outside the simulation region have no influence on the dynamics of the simulation region

aside from their net charge.

According to Gauss' law,

E(I) - E(0) P( )d=

so surface charge densities can be defined at the left and right hand boundaries as

a%= coE(0)

and

ar -eoE(l)

so that

o p(x) d + , + CP ffi 0 (

i.e., the total charge of the system including the boundaries is zero. This is only a definition. If the

boundaries represent conducting walls, then this surface charge will be the surface charge which is

physically on the walk (see Fig. 2). If the boundaries represent only an end to the region of interest,

then this surface charge will represent charges beond the boundary.

The electrostatic energy within the system is

Integrating this by parts (using E = -d*/dz and p = codE/dz)

W =i O pdz + 2E(O)OL - 2E(l)OR

f ptdz+ I ULO 4.+ I Oxon (2)

*~~~ 2y* . * . **** * .* . . . . . . . . . .
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This result is independent of the reference potential, thanks to Equation 1, so it is convenient

to hoose OL as zero for the entire simulation (in a sense choosing the left boundary as ground

potential). This choice means that aL need not be known to calculate the electrostatic energy

(which is an esential diagnostic). Since UL is not needed for the dynamical equations either, (and

can be calculated at any time from Equation 1) OL can be eliminated as a dynamical variable in a

siultion (this is done in PDW1).

When the boundaries represent conducting walls, the surface charge density represents a real

surface charge density. Equation 2 is correct, though, even when the boundaries do not repre-

sent conducting walls, because W, represents only the energy contained in the region between the

boundaries.

The circuit model with all of its dynamic variables can now be diagrammed (see Fig. 3). The

background current, shown as JDACK in Fig. 3, has not been mentioned. It can represent either

current due to a mamive background species, or a parallel circuit containing a constant current

source.

Boundary-Particle Interactions

(a) Charge Accumulation at Boundaries

In particle simulations, the electric field and potential are usually found on a spatial grid using a

finite difference approximation of Poison's equation. To do this, the charge density must be known

on the sume grid, and the algorithm for assigning the charge. of the particles to the grid is known as

charge accumulation. Many such algorithms exist, but the most commonly used algorithm is called

linear weighting (also sometimes CIC, Cloud in Cell, or PIC, Particle in Cell). In linear weighting,

a particle's full charge is assigned to a grid point if it is exactly on it, and if it is not, the fraction

of its charge which is assigned to the grid point varies linearly with its distance from the grid point,

reaching zero when the particle sits exactly on the next grid point. This weighting scheme can be

represented graphically (see Fig. 4). Linear weighting is popular because it has the advantages of

being simple (and therefore fast), and continuous, which reduces noise.

The problem now is how to cope with a boundary. The method implemented in PDWI requires

both a grid point at the boundary, representing the plasma charge density adjacent to the boundary,

and a surface charge on the boundary (see Fig. 5). The method is diagrammed in Fig. 6. Note that

%'V %J'% 'VVV % , . ' %. I %... *, . '. . ... (
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when a particle's position shifts from outside the boundary to inside the boundary, its charge jumps

suddenly from being part of the charge density at the boundary to being part of the surface charge

on the boundary. It might seem that this sudden jump would cause some unwanted noise, but it

will be shown in the section on solving Poisson's equation that the nose is limited to the first grid

cell, and has virtually no effect. It is important to remember with this algorithm that the charge

accumulated at the grid point at the boundary is only half of that which would be accumulated at a

grid point which is not at a boundary if the physical charge density were the same at the two points.

This can readily be seen from Fig. 6, as the triangle representing the charge collection of the grid

point at the boundary has only half the area of the other grid points. In this sense, the grid cell

adjacent to the boundary is only half as wide as a normal grid cell, and this must be compensated

for. Thus for diagnostic purposes, if for nothing else, it is necessary to double the charge collected

at the boundary to obtain the physical charge density. (Birdsall and Langdon [12] actually define

po to be half of p(O). This is natural from the standpoint of a computer algorithm, but may cause

some confusion.)

This "hard" boundary is more difficult to implement when weighting schemes other than the

linear one are used, as they may assign charge to grid points which are more than a single grid

spacing away from the position of a particle. The finite difference equations for the electric field and

potential must be carefully designed to prevent the noise of absorption from affecting the potential

throughout the plasma (se the section on the solution of Poion's equation).

Other schemes which fit into the linear weighting method are "soft" boundaries. In these

schemes particles enter the boundary gradually, i.e., the charge of a particle near the boundary is

assigned partly to the boundary and partly to the grid. Two such schemes are diagrammed in Fig. 7.

The first of these simply merges the plasma charge density at the boundary with the charge on the

boundary. This method is numerically equivalent to the previous "hard" boundary method, but does

not give the "real" charge on the boundaries, which may be an inconvenience. The second method

is more faithful to the spirit of linear weighting. The charge density at the boundary exists, but

particles are absorbed into the boundary slowly, and thus create no noise. The problem with "soft"

boundary methods is that a particle which has been partially absorbed can turn around and leave

the neighborhood of the boundary, taking away charge which has supposedly already been absorbed.

This is clearly unphysical, although it may not always be a problem. If it is known beforehand that

particles will always be entering the boundary at a large velocity, or that the particles which are

ii . "- . . " . " . % • " . - . "• - . • - % - -- , .% % ,• % % - -%
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almost reflected at the boundary will play no role in the dynamics, then these methods are quite

usable, though they are unlikely to be necessary. The methods described in the rest of this article

should apply just as well to both types of boundary.

(b) Particle Absorption

Another problem created by the incorporation of boundaries into the model is the removal of

particles which have left the simulation region (ie., been absorbed by a boundary). Conceptually

there is scarcely a problem: once a particle is absorbed, it can be removed frm the simulation. This

removal, however, creates several algithnic problems. Fist, it means that the number of particles

in the simulation will vary with time. This requires some foreknowledge of the maximum number

of particles which will exist in the simulatiou, since a fixed amount of computer memory is usually

allocated to the particle array. (Some compilers allow more memory to be allocated when it is

needed, but this can waste valuable computation time.) Second, the removal of particles which have

left the system can be an expensive procres computationally, so an efficient algorithm is needed.

In the computer, particles are assigned to menory locations in an array, and when particles are

removed, they will generally leave holes in the array. The algorithm which removes particles should

also repack the particle array so that the array is no longer than the number of particles which

are still inside the simulation region, since a compact array makes the rest of the simulation more

efficient.

The algorithm which is implemented in PDWI uses two pointers. The first pointer starts at

the first particle in the array, and checks to see whether the particle is still inside the system. If it

is, then the pointer moves on to the next particle in the array. The other pointer marks the last

active particle in the array. When a particle is found which is not inside the system, the last active

particle is moved into its place in the array, and the second pointer is moved back to the next-to-last

particle (which now is the last particle in the array). The process of checking whether particles

are still within the simulation region then resumes, beginning with the particle whose location in

memory has just been changed. Some care must be taken to be sure that when the two pointers

come together, no particles are lost.

Since every particle must be tested, this algorithm is not vectorizable, and so the removal

and repacking of particles is very time consuming on a vector machine (such as the CRAY-1).

Fortunately, there is no reason why this process must occur every time step. Particles which are

-. 5
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beyond the boundaries can have their charge added to the charge of the boundary temponrily when

the charges of the particles are being weighted to the grid to obtain the charge density. Then when

they are removed their charge can be permanently assigned to the boundary itself. This has the

disadvantage that it complicates the bookkeeping necessary to account for all the charges. Errors

in such bookkeeping will have drasti effects.

(c) Particle Reflection

Other problems arise in the treatment of particles which are reflected from a boundary. For
simplicity, let us consider reflection at the left-hand boundary. First, if particles are simply reflected,

meaning z .- -z and v. +- -v,, and the leapfrog method (which is almost universal) is being used,

a first-order error occurs in the reflected velocity. (The notation z ,- -z means that the value

of the z coordinate is to be replaced with the negative of the value it would have had if it were

not being reflected. This might seem backward, but the notation is intended to mimic a computer

language assignment statement.) Since the cumulative error of the leapfrog method is second order,

it is worth while, if not essential, to correct this first-order error.

This correction can be derived from energy conservation or from considering the net effect the

electric field near the boundary should have both before and after reflection, or by a careful analysis

of the force on a particle, as in the derivation below. The error can be understood by considering the

difference between a physical particle being reflected and a simulation particle being reflected. The

velocity of a physical particle, and therefore the rate of work done on it v. E, reverses the instant it

is reflected. A simulation particle, on the other hand, is accelerated for a full time step, and is then

reflected. Thus the energy change is all of one sign, and a first-order error results. The details of

this picture are complicated by the temporal offset between z and v. (z is known at integral time

steps and v. is known at half-integral time steps).

The derivation will consist of five steps: an acceleration of half a time step to synchronize the

particle velocity with the particle position, advancement of the position and velocity to the time of

reflection, reflection, advancement to the end of the time step, and a deceleration of half a time step

to put the velocity back to the correct time for the leapfrog scheme. For simplicity, reflection from

a left hand wall at z = 0 will be considered for the derivation. The position and velocity are known

after the particle has passed through the wall, so these are the natural variables to define as z, and

v.. Let to be the time at which z is known, so that t- 1 /2 is when v. is known. The reflection occurs

% % %
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somewhere between t-I and to (see Fig. 8). The electric field can be amwid to be uniform in space

and time, since it should vary only slightly over the distance and time a particle travels in a single

time step.

At t=- the velocitys

qE At

(remember that v. = v- 1/ 2 ). At the moment of reflection, the velocity has been acclerated for a

time At - z/v. to first order, so the velocity just before reflection is

Reflection just reverses this velocity, so

V +  fi v . + 1 E 2

The time interval from the time of reflection to to is z/v., so

Vo V+ + qE z

in ve

=-v. + 2E 2 z  At)

The desired velocity is v- 1/2 after reflection, which is

qE At
m 2

=- + qE (2 _z.- At)

This result can be rewritten so that it will apply to any boundary, so that the rule for reflection

is now

. v..- -VG + qE 2  - At (3)

where d is the distance between the particle and the boundary after reflection (d is always positive).

Since it is to be expected that d for different particles will be uniformly distributed between 0

and Iv.lAt, the correction term (in parentheses) will be zero on the average. Thus if the reflected

_ • .*' . -b J .,S . -. -, . -. • j ." .'. -.~* - - - . .. , ".N% % " . -. - . . . ". . . . * **% 5 .5 . .- " % .5'.. . .
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velocity is not corrected, the effect will not be catastrophic, but will rather cause some diffusion in

velocity space. The root mean square velocity change of an ensemble of particles will be

qE At o, = -- (4)

independent of velocity. Depending on the distribution, this diffusion will most likely cause some

heating (the magnitude of this effect is calculable given the distribution), but since reflection occurs

infrequently for any given particle, the effect may well be unimportant, particularly if the electric

field is small.

. Another difficulty arising from reflection is physical. When a magnetic field is present, the

reflection algorithm must depend on the physical situation the reflection is meant to be modeling.

If the reflection represents an actual physical reflection, as at a wall, then z +- -z and v. +- -v.

(with correction) is proper. If, however, the reflection is meant to model a symmetry plane, then

an inversion (z *- -z, v. +- -v., v, +- -v, and v. 4- -v,) is required to preserve the direction

of the magnetic field through the reflection. This is a subtle physical point, but important; simple

reflection does not conserve a particle's magnetic moment, but inversion does (see Section 14-7 of

[12]).

(d) Particle Emission

The last boundary-particle problem is particle emission (or injection). This problem is closely

related to that of initial loading of a simulation, and this discussion assumes some knowledge of

loading techniques. (See reference [12] for a thorough discussion of both initial loading and injection

techniques.) The fundamental difference between loading initially (t = 0) and injecting during

(t > 0) a simulation lies in the region of phase space which is to be filled with particles. For the

initial load, the entire simulation phase space is usually filled, whereas for injection, only a wedge-

shaped region of phase space need be filled (see Fig. 9). The random variables for the initial load are

z and v, whereas the random variables for the injection are t and v. Both distributions are typically

uniform in one variable (z and t respectively), and non-uniform in v. The uniformity in the one

variable is not as important as the statistical independence of the variables - lack of independence

makes the loading and injection problems much more difficult. The loading distribution function

must be known. Let it be denoted as f(v) (maintaining the assumption that f(v) is independent of

z and t). In terms of f(v) the injection (flux) distribution is just vi(v) (suitably normalized), thus

the two problems can be solved by the same methods.

.4.%
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The problem of injection has complications which the loading problem does not; for instance

(t) the charge of each particle injected must be subtracted from the charge of the boundary, and (it)

the number of particles injected each time step must be chosen to average to the desired number

without resorting to fractional particles.

Another injection problem is the temporal offset between position and velocity. In the standard

leap-fog integration scheme, the positions are known at integral time steps, and the velocities are

known at half-integral time steps. It is important that the injected particles (which are injected

on the basis that position and velocity are known at the same time) be given an acceleration (but

no displacement) of a fraction of a time step (which depends on the time of emission, and may be

negative) in order to synchronize them with the rest of the particles (see [12] for a discussion of the

leapfog scheme).

A subtle and insidious injection effect has recently been discovered and explained (this work is

being prepared for publication in the Journal of Computational Physics in the near future). The

effect is the artificial cooling of a trapped population of electrons. The explanation is a combination

of simulation and physical effects which has not been previously observed due to the rarity of long

bounded simulations with trapped particles. The effect relies on the thermodynamic properties of

what is known to simulators as "quiet" injection.

In most simulations, fluctuations are a problem, and so to minimize them particles are put into

the system with artificial regularity in order to reduce the noise produced by the particles (see [121

for a discussion of quiet loading techniques). This noise, however, includes the fluctuations which

must occur in a plasma which is in thermodynamic equilibrium with the waves it supports. (It is

helpful to use the classical idea of a wave field which is in thermodynamic contact with the particles.)

In a particle simulation with quiet injection of particles, the wave fluctuation level is much smaller

than that which would occur in thermodynamic equilibrium, and so the wave field represents a cold

system in contact with the plasma.

The cooling of the trapped electrons can be understood from this new viewpoint. Because of

the cold wave field, the particles will all be cooling somewhat. Only the trapped particles, however,

stay in the system long enough to cool noticeably. One might expect the wave field to warm up

(increasing the fluctuation level), but the system is bounded, so the fluctuations can leave the system,

primarily carried by the particles, only to be replaced by the constant injection of quiet particles.

Put more simply, the trapped particles radiate, that radiation leaves the system, and there is no

'.I
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external source of fluctuations to wrm the particles (as there would be in & state of thermodynamic

equilibrium). This effect is not observed in periodic simulations because the fluctuations generated

cannot leave the system, and the energy in the fluctuations is small compared with the thermal

energy of the partkies. A more detailed explanation, and the simulation evidence for it, will be

published separately soon.

Other boundary effects are possible, and for the most part are understandable in terms of the

problem so far considered. For example, L. A. Schwager has succeeded in including secondary

emission of electrons, which is dealt with as a combination of absorption and injection, and P. G.

Gray has included ionization over a region of the simulation. (None of this work is yet published.)

Solution of Poisson's Equation

There are two differences in the solution of Poisson's equation in a bounded l-d system as

opposed to a periodic one. These differences are: allowing for the net non-neutrality of the system,

and satisfing the boundary cmditiona. The boundary conditions in a periodic system are simply

that the potential and electric field be equal at each end of the simulation region. (It is possible to

add an overall electric field, which would make the potential difference acoss the system non-zero,

but the periodidty of the electric field is absolute.) The periodicity of the electric field requires that

IPdZ= E() - E() = 0

. ie., the system must be net neutral. This constraint arises because the boundary conditions go

" beyond the conditions necessary for uniqueness of the solution.

In a bounded (non-periodic) system, the boundary equations are not overspecified, and the net

charge is not necessarily zero. The boundary conditions are one of the familiar types: Neumann,

Dirichlet, or mixed. These are, respectively, a given electric field at one end (and the potential at

some point), a given potential difference between the boundaries (and the potential at some point),

or some linear relation between the electric field at one end and the potential difference between

the boundaries (and the potential at some point). Fortunately, since the homogeneous solution of

Poisson's equation is so simple (a uniform electric field), it is easy to solve the system by first using

almost any boundary conditions, then adding in the homogeneous solution to satisfy the desired
a.

a' boundary conditions.

ML

a .-.- , .,-. 4 ..- , .-. .,% .% . ., . .. . . . . . - . . . .. ...-. .%. ,.' .,-,-,,. .. . .. .% -.-. ' . . -,-.' '
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The finite diference equation most commonly used in one dimension for Poissmon' equation is

4 +j -- 24 + 4 -j p"
=_ _ to (5)

Az 2  £o

with the auxiliary definition of the electric field

,- - 4k+1 (8)
2A

These E.'s satisfy

E p ) (7)

AX U

These values of E. are used to accelerate particles. Another set of E's can be defined, which are

more useful in understanding the difference equations. They are

E.+1/2 = 4.+1 -0. (8)

AC

These E values satisfy the simpler equation

E.+/ 2 - E.-/2 = P (9)
AZ 6

The values of E with integer indices can be exp amd in terms of the half-integer values as

E% = E.+1/ 2 + E,- 1 2  (10)
2

The half-integer values are not used to accelerate particles (although they could be), and are not

even equal to the field used to accelerate a particle which is half way between two grid points. The

interest here in these half-integral field values is theoretical.

The difference equation version of Equation 2 can now be used to determine how the boundaries

must be handled. Starting fiom the integral of po,

N-i

W =- Z (Eu.+1  ( -e 3 !1 )O.+ E (Oj +' Ax + 0 + R4NN

N-2

= o E, .i/ 2 (4) - 4'.+) + ~[oi 2 k

+ oE /- --1/ + 0NA + (Lo0 + UR0N)]

N-i
-- E- +1/20-- -+ j![ oEl + oA2 96. 2 + - a

+ fON1/4F, 1+I-OA + (OO ++RN
,2

+ (ffR+ T-AZ +COEN -I2) ON

2 2
. ,.1¢ , 'e e,- -. , - :". . . . ,,,'e ,'-.. ". - - - ' ' ,..,. € .. ,.- - - ,
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The summation is the desired integral, so that the rest of the terms should be zero for Jl choices of

the ground potential Since the two boundaries must be independent,

= I( + polz)
F /=(11)EN11 =- i1 ipNA.)

- -- ( +2

are the necessary choices. We can now do away with the half-integer E's, and the result is two new

conditions:

01= 00 - O + Z AX
eo 2 (12 )

9N-I = ON - - + AZ) Ax

If the boundary condition is the Dirichlet type (fixed bias external circuit), then Equatios 12 give

the surface charges. If the boundary condition is the Neumann type (open external circuit), then

one of the equations will be the boundary condition, and the other will give the other surface charge.

If the external circuit is anything but open or fixed bias, the circuit equation will impose a time-

varying mixed boundary condition which will supply the last condition for uniquely specifying the

solution.

It can now be seen why the absorption of particles does not create noise throughout the system.

When a particle is absorbed, its charge moves from being counted as part of pN/2 to being counted

as part of o'x. Thus 46N-1 is not affected by the noise of absorption. The noise is limitted to OL and

UR, and therefore to Eo and EN. Some people (A. B. Langdon, for example) prefer to use E/ 2 and

EN- /2 instead of E0 and EN to accelerate particles, avoiding the noise in favor of a small systematic

error. This use of EI/2 and EN-1/ 2 for E and EN is on/d for the acceleration of particles.

Once Poisson's equation has been turned into a finite difference equation, and the boundary

conditions have been similarly converted, its solution is unique and therefore independent of the

method used to solve it; however, some methods of solution offer advantages over others. I will

describe three methods of solving the finite difference Poisson equation. The first two are based on

the Fast Fourier Transform (FFT), and the third is a direct "marchine method. The third method

is the one which is implemented in PDWI, but the others have been used in the past.

The preferred method for solving Poisson's equation in periodic simulations is the Fast Fourier

Transform. The FFT has three important advantages: first, it is naturally periodic, second, it is
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vectorizable on CRAY clams computers, which allows an appreciable increase in speed, and third, in

a periodic system, the different Fourier modes often have physical meaning (wave modes), and the

FFT produces modal information as a by-product.

An FFT can be used in solving the non-periodic case also, but some preconditioning is required,

and two of the three advantages are lost. The natural periodicity of the FFT becomes a liability

rather than an advantage, and the Fourier modes will rarely if ever carry any physical significance,

thus making the extra time and effort of the FFT time and effort wasted. The vectorizability of

most of the FFT algorithm remains, however, which may make FFr methods profitable despite the

complexity of the algorithm.

Because of the inherently periodic nature of the FFT, a non-periodic system must be mawpu-

lated into a periodic one if the FIFT is to be used to solve it. The first method does this doubling

the length of the system (for purposes of the field solution only), and defining the charge density

over the newly introduced half of the system so as to make the entire system periodic, ie.,

P = - (13)

Note that this periodicity also forces PN and p ( pu,) to be zero, which are not the given values

for these variables. Al the Equations 5 are satisfied, however, and since the points at n = 0 and

n = N do not satisfy the Equations 12 anyway, the further incorrect treatment of these points is

of no consequence. Once the FFT solution has been obtained, the uniform field (homogeneous)

solution (0= -- . nAz, Fo arbitrary) can be added to the FFT solution with E0 chosen so that

the sum of the FFT solution and the uniform field solution pill satisfy Equations 12. This method

has the obvious drawback of using twice as much space and time as a similar periodic system. Since

the solution of Poisson's equation often requires very little time and space relative to the particle

integration, this may not be an important drawback.

Another FFT method is to subtract the average charge density from the full charge density,

thus producing two problems: one which is net charge neutral, and one which has a uniform charge

density, i.e.,

V201 =p (14)

V2  = - p (15)

p=0+0

2.
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It is important to define p correctly:

iT + E +-- (16)

The net neutral (0) problem can be made periodic by simply wrapping the system around so that

n = 0 and n = N represent the same point with charge density (Po + pN)1 2
- p (to maintain the

charge neutrality). This problem can then be solved using the FFT.

The uniform charge density problem can be solved algebraically since the finite difference equa-

tion and the differential equation have exactly the same solution for a uniform charge density. The

solution is just

-L,,,) =(17)
2to

The sum of the uniform and periodic solutions will satisfy everything but Equations 12 so, as in the

previous FF1 method, a uniform electric field must be added in order to satisfy them.

Before describing the third method of solution, it is important to point out one common method

of FF1 solution which does not work. The FFT of Equation 5 is

4 2  (18)

but some simulators prefer a "non-localized" solver which uses the equation as derived from the

continuous Fourier transform:

V .i _(19)

The dangers of this method have long been known (see Appendix E of [12]), but it does not usually

produce serious errors for periodic systems. When the FF1 is used to solve a system in which the

charge density comes from a non-periodic system, however, the sudden change in the charge density

at the boundaries produce large values for the high wave number components, and the solution via

(19) is very different from the solution via (18). The inaccuracy will be worst near the boundaries

(the site of the sudden change), and this is where the boundary conditions are to be applied. Thus

severe error can arise from the inappropriate use of the FF1 method of solving Poisson's equation.

The alternative to the FFT methods of solution, is a direct solution which moves from one end

of the simulation region to the other. This method is not vectorizable, but in most one-dimensional

gridded particle simulations, the solution of Poieson's equation still accounts for a small fraction of

the computation time.
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The method begins at one boundary of the simulation region, for example the right hand

boundary in PDW1, and assumes some value for the surface charge and some value for the potential

at that boundary. The appropriate one of Equations 12 is then solved for the first interior value of

the potential, for example in PDW1,

I-1 a. (n+ -Az) A (20)

Now two adjacent values of the potential are known. Equation 5 can be rewritten now to use any

two adjacent values of the potential to find the unknown value next to them, for example,

_ !A+- 2 (21)

Thus it is possible to imply march across the system, ending up with a value for # at the opposite

boundary. This solution can then be adjusted by adding a uniform field solution such that Equations

12 are both properly satisfied. In PDWI, a constant is first subtracted from all values of$ so that

#o will be sero. The boundary condition, as determined by the external circuit, is then applied to

4find the necessary uniform field to be added to satisfy Equations 12.

External Circuit

The external circuit is the most easily overlooked feature of non-periodic plasm simulations.

Often, an open circuit (i.e., no charge is transported from one boundary to the other except as

plasma particles) is desired, and it might be argued that this is no circuit at all. The charge which

passes the boundaries must still be carefully accounted for, however, and in fact, the two boundaries

behave in a sense like a capacitor. Thinking in terms of an external circuit, even when the circuit is

open, is a good way of ensuring that charge is not transported from one boundary to the other in a

way which is inconsistent with the physical model.

An external circuit has its ow intrinsic time scales which have nothing to do with the plasma

time scales. For example, an RC circuit would have an RC decay time constant, and an LC circuit

would have a frequency of oscillation of 1/0/W. The simulation time step must be small enough to

resolve these time scales, or the circuit simulation will produce inaccurate results regardless of the

plama parameters.

The external circuit can be arbitrarily complex, and circuit simulation is a large field in its

own right. The external circuit chosen for consideration here is a series RLC circuit (see Fig. 3).
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In addition to the RLC elements, the circuit has both AC and DC voltage sources The circuit

equations (including the field equation) ame:

+ )to +!R = v(t) - v.t() (22)

Ai r -Q + AJs.,..(z =1) (23)

and

V2(z,t)i p( t) (24)

where the boundary conditions on the electric potential are

(0, t) =0

low -(25)

and

V(t) = =1, t)

in accordance with Kirchoff's voltage law. The area of the boundary is A (this is introduced for

dimensional reasons; it is the cro-section of the plasma), R, L, and C represent the external circuit

resistance, inductance, and capacitance, and I is the length of the plasma system. Ji ., is the

net current density from the plma at the right hand boundary, .t.. the absorbed current less the

emitted current.

The mathematical character of these equations depends on the order of the primary circuit

equation (22). If L v 0 then the circuit equation is of second order, which is the sme order as the

equation of motion for the particles of the plasma. If L = 0 but R 0 0 then the circuit equation is

of first order, and becomes a time-dependent mixed boundary condition on the field equation (24).

I L = R = 0, then the circuit equation becomes a simple mixed boundary condition on the field

equation. Let us consider each of these three cases in detail.

When L # 0, the circuit equation is of the same order as the particle equations, and can be

solved by the same type of leapfrog scheme, with the addition of the resistive term. (Other schemes

are, of course, possible, but this is the simplest one which is second order accurate in time, and it

meshes nicely with the particle mover.) Just as the position and acceleration of a particle is known

at integral time steps and the velocity at half-integral time steps, so the charge and voltage are

. * % " * % ' "
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known at integral time steps, and the current (I f Q) is known at half-integral time steps. The

difference equations for the circuit equation (22) are:

1.+1/2 = (Qu+i - Q,)Iat (26)

and

L(,.+1/2 - 4,-1/2) + R(,.+1/2 + 4-1/2) Q(
At 2 +-= v-V..,) (27)

These difference equation yield second order accuracy in time. Equation 27 can be solved for

.+1/2, and Equation 26 can be solved for Qu+s, thus advancing the circuit. The surface charge

a is advanced by subtracting from it the amount which was added to Q (this is only the circuit

contribution to the change in o - the plasma contribution must also be taken into account).

The way in which the advancement of the circuit is melded with the advancement of the plasma

is diagrammed in Fig. 10. From a known voltage (implying a known potential within the plasma),

the partides and the circuit can be advanced uimultaneously. ThIs advancement yields a new charge

density p, and a new surface charge u (both the plasma and the circuit have altered u), which allow

the solution of the field equation (24) producing the new potential and voltage. Numerically, the

solution of the circuit equation is equivalent to the solution of a single particle equation, and should

require about as much time.

The initial conditions for the circuit equations require some care. It is natural to assign an

initial value for the capacitor charge Q and an initial value for the current I, since these are the

standard initial conditions for Equation 22. One more variable must be given an initial value in

order to completely specify the initial conditions. Two logical candidates for this variable are V

and a. The choice between them is one of taste, as either one can be d-rived from the other.

My personal preference is for V as it is more immediately relevant to the dynamical equations, is

an experimentally measurable quantity, and is generally more often of interest. Since the circuit

difference equation is a leap-frog scheme, it is also necessary to introduce the initial half time step

offset between the quantities which are to be calculated at integral time steps (Q and V) and those

which are to be calculated at half-integral time steps (I). This is done in essentially the same way

that it was done initially for the particles (again, see [121 for a discussion):

i-1/2 = [Vo - v..,(Co) -RIo- (28)

. - , . ,-,:,',. ... . 0,:. P%' ,-..-.-."....,.,..,,,,.,.. - ..-.. .:.- I...P. -',.- '. ,,P -.', Mw.-..-,%'., ,'.V ,¢
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When L = 0 (but R 0 0), the circuit equation is only of first order. The leapfirog scheme

cannot be used to advance the circuit in this case because it is numerically unstable for small

values of L (including zero). The reason for this is related to the singularity of the limit L - 0.

The circuit equation has two (complex) frequencies amociated with it for L 9 0, but only one for

L = 0. As L approaches zero, the solutions of Equation 22 (with V = 0) have two decay rates

which approach RIL and I/RC. Physically, the RIL decay rate becomes infinite, meaning that the

solution corresponding to it goes to zero instantaneously. The finite difference analogue to the decay

factor exp(RAt/L is

1 - RAt/2La - (29)
1 + RAt/2L

which is quite different from the exponential decay factor desired if RAt/L > 1. For very small

L, a approaches -1. A simple way of dealing with this circuit is to use a backward Euler method

(which is only firut-order accurate in At). This might seem unsatisfying in view of the second-order

accuracy of the previous cae, but the method has some virtues. The new circuit difference equation

is

RzQ- -W+V-+I - V,,,,(t,,+,) (30)

Note that the equation requires the voltage at time step n + 1. This method requires a dif-

ferent approach than the L 6 0 case. Equation (30) is useful because the capacitance between the

boundaries of the simulation region (with the plaim locked in place) is known to be Co = Afo/I.

Thus,

Vn+I - VM'+1 - (Q-+, - Q-) (31)

where V.+, is the voltage which has been computed from the neu particle positions, and the old value

of Q, i.e., after the particles have been advanced, but withot letting the circuit advance. Equations

(30) and (31) can now be combined and solved for Q.+ 1 , then V.+, can be computed from either

equation, thus advancing the circuit. A simple intuitive picture for this method is that the particles

are advanced while the circuit is held fixed, then the circuit is relaxed, while the particles are held

fixed. This scheme (which is implemented in PDW1) is diagrammed in Fig. 11.

As was mentioned, this method is only first-order accurate in time. Second-order accuracy can

be achieved using the following scheme (see Appendix A for the derivation). Again, let Co = foA/l

be the capacitance between the boundaries. If the plasma were not present, the circuit woucl be a

r-C
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simple RC circuit with capacitance C' satisfying

1 1 1 (32)

According to the exact solution of the differential circuit equation, in a single time step, the charge

on the capacitor would decay by a factor of exp(-At/RC'); however, due to the finite difference

method, it would actually decay by a factor of 1/(1 + At/RC'). Define le such that

I + - =exp (33)
MCI'C

then solving

kQ. .-Q.+Q.+ -v.'+I+V 3 +. +V.t(+ +V.( (34)
At + C 2 Co 2

for Q-+1 and using this to solve Equation 31 for V.+j gives Q to second order. Even without this

correction, the backward Euler method has the advantage that in the limits C -- 0 and C -. oo,

the numerical decay factor and the analytic decay factors are equal.

It is also posible to achieve true second-order accuracy by resorting to three or four point

schemes. (Such a scheme was actually worke out by Dr. A. B. Langdon - see page 416 of [12].)

These schemes introduce spurious frequencies, and require extra initial conditions, but if the scheme

is chosen carefully, the spurious frequencies damp out quickly. Since the circuit advancement takes

so little computer time, the only reasons for not resorting to some second-order scheme are in-

convenience, and some concern that the interaction between the leapfrog particle mover and the

circuit may produce unexpected results due to the differences in the algorithms. The effects of this

interaction have not to my knowledge been studied. It is to be hoped that they are inconsequential.

The initial conditions for the L = 0 case are much the same, except that now the initial value

of the current I cannot be specified, as it is determined by the initial values of Q and either a or

V. Since Equation 30 is not a leap-frog scheme, it is not necessary to create a temporal offset in the

current (which is no longer a dynamical variable anyway).

The case for L = R = 0 represents a physical situation in which the external circuit comes to

equilibrium instantaneously. Thus the concept of order of accuracy no longer applies. Inspection will

show that the same numerical algorithm (Equation 30) used for the previous case (L = 0, R 0 0)

works in this case without modification. The sole difference is in the initial conditions. Now it is
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I posible to specify only one of Q, a, and V at t =0. f Q and o are both specified, the system will

relax in one time step to the proper state such that Q + Aa is conserved.

Extension to Electrostatic Models of Higher Dimension

Simulation in two or three dimension is far more complicated than simulation in a single dimen-

sion (see Chapter 15 of [12]). Nevertheless, all the methods described here can be extended to two

and three dimensions with the exception of the solution of Poisson's equation. The charge accumula-

tion algorithm can be somewhat complicated by irregular conducting surfaces within the simulation
region, but the concept remains simple. The charge removal algorithm is completely unchanged, and

the reflection algorithm is unchanged except for having to calculate an angle of reflection when the

reflecting surface is not perpendicular to an axis. The circuit remains a zero dimensional system.

More complicated arrays of electrodes are possible, and more complicated circuits, but the methods

for merging the plasma simulation and the circuit simulation are still valid.

The general multi-dimensional Poisson equation is rather difficult to solve for arbitrary bound-

ary conditions, and efficient methods for its solution are a topic of active research. In non-periodic

simulations in particular, the distribution of the surface charges on the boundaries must be calcu-

lated, and the homogeneous solution of Poisson's equation is no longer simple. Several methods for

solving Poisson's equation in two or three dimensions are known, however, particularly in cases in

which symmetry allows some simplifications. Often, in particularly simple systems (fully periodic

systems, for example) the FFT can be used in all dimensions. The introduction by Hockney of

the cyclic reduction technique was a breakthrough in solving systems with more complex boundary

conditions, and the capacity matrix method allows the solution of problems with irregularly shaped

conductors present. Hockmey's review article [13] is a comprehensive exposition of these methods.

Summary

The problems created by the introduction of boundaries into a one dimensional electrostatic

simulaton are many, but they are all solvable through straight-forward methods. They include

the problems of particles crossing boundaries, the solution of Poisson's equation with non-periodic

boundary conditions, and the proper accounting of charge flow, including an external circuit. Only

the solution of Poison's equation presents new conceptual difficulties when more dimensions are

% %
0 F* r-e ' .. e.r.q
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necessary, particlularly with regard to boundary conditions. These difficulties are sometimes easily

solved, and sometimes extremely difficult to solve.
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Appendix A: Derivation of Equation 34

The equation to be solved is

RQ + - V(t) - V.t(t) (al)

The source term (V(t)) is not a simple source term, however, since V(t) is a function of Q through

the capacitance of the plasma region. To solve this equation properly, it is necessary to find a source

term which depends only on the particle dynamics. This is done by adding Q/C 0 to both sides of

Equation al where Co = coA/l is the vacuum capacitance of the plasma region.

Q Q .
+ 6 +U VM+ V.,(t)(a2)

The right hand side of Equation a2 is now a function only of time and the particle motions - not

of the charge Q. This is because it is what the voltage would be (plus the bias) if the external

circuit were open, ie., if no current flowed through the external circuit. This is easy to see, since if

the charge which has flowed through the circuit into the capacitor were sent back to the boundary

surface charge, the voltage would go up by Q/CO.

This reasoning does not take into account the effect of feedback from the voltage V(t) on the

particle motions. If the circuit advancement is second-order accurate, though, then the forces on

the particles will be accurate to second order, and if the particle trajectories are accurate to second

order, then the forcing term of the circuit will be second-order accurate. Thus the second-order

accuracy of the whole scheme hinges on the second-order solution of Equation a2.

When the right-hand side of Equation a2 is zero (the vacuum case), the solution for Q is a dying

exponential with time constant RC' where

1 1 1

The stable backward Euler finite difference method for this problem is
m-

t Q + q' = 0 (a3)
At C'

(R has been used instead of R in anticipation of the need for a correction). The solution to Equation

a3 decays in one time step by a factor of 1/(I + At/R'C'), so that if M is chosen so as to satisfy

4' At (At \(4+RC----, exp R (a4)

,•.-""
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then the solution to Equation &3 will be the exact solution of Equation &2.

The source term must now be added to this scheme in such a way as to retain second-order

accuracy. Let the entire source term be denoted by F(t), i.e.,

i F(t) = v(t) + 1 - v..t(t)

then the correct method of introducing F into Equation a3 is

Q.+i Q. + '(F.+, + F) (a5)

This correctnem will now be shown.

To simplify the algebra, let RC and A = /IR, then Equation &5 becomes

Q+ Q. + Qt+I= I F.+, + F. (a6)
At AT A 2R

with

I + T- = xp (

(this is just the definition of /R rewritten in terms of A and r).

Solving Equation a6 for Q.+I gives

I -+ Q.+I = Q. -+I ( F.+ + F) At (a8)

The factor multiplying Q,+I is just exp(At/r), so

Q. + At-- (. + F. )] exp (-a- (9)

Each of the quantities on the right hand side must now be expanded to second order in At.

The exponential is just

exp(-A) I At 1 At 2  (alO)

Rather than expand 1/A, it is easier to expand exp(-At/?")/A using Equation &4:

SI (all)
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(Only a first-order expmsiom is needed here ince the term contaim g A is multiplied by At.) The

source function F can also be expanded:

F.+j = F. + A .A (al2)

(Again, only a first-order expansion is neemary.) So,
1.

(F.+ , + F ,.) = F. A (a13)

This can be simplified by using the differential equation

F. +

and its derivative

FA. +

to get

F.+i+F -+ Q + +. + -. (14)
2R T 2

Substituting all these expressions into Equation a9,

Q.+1=Q. - + i-A

1

+Q.e-At-Q

to second order. This is the correc expansion for Q.+, to second order, so the scheme is scond-order

accurate.

To derive Equation 34 it remains only to manipulate the right hand side of Equation a, using

Equation 31:

I v.+ + + + +--.+.
,(v ' + +0

The ultimate result, when all substitutions are made is Equation 34:

S+ - Q,. +Q +.+. V4 1 + V,. + . V..I(t,.+I) + .. t(t.)
At C' 2 Co 2

%
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Fig. I. Different 1-d models can have identical solutions: (a) is contained between two walls, (b) is open-
ended, but region of interest is only between grid and wall. As long as the particles which enter the region
of interest are exactly the same in both cases, (a) and (b) will yield identical results.
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Fig. 3. Model for external circuit with dynamical variable. a, V, I, and Q as defined in text. Arrow
represents a constant background current density (which could also be represented as an external constant
current source in parallel with the external circuit shown).
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Fig. 4. Assignment of particle charge to grid - linear weighting. The charge assigned to the grid points
due to the particle at X is represented by the heavy vertical ines.
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Fig. 6. Linear weighting for a "hard" boundary system Note the triangle for the grid point at the boundary
is cut in hal by the boundary, so that only half as much charge accuulates there as on nearby grid points.



WALL 1234

a

-1WLL01

Sb

Fi.7Jierwihigfrto"ot onaysses a up oehrczreo n daett h

bonay n b eihste mohy



.,.t 1/2ti 0LJ

! t-1/2

• ! It-3/2

tt-2

WALL

~Fig. 8. Positions are iown at solid dots, velocities at hollow dots.

|x
%,"

'' '

t- 3 /

P f '' ." " "r' '
? .'.% . € • .'. " t " hi .' .'.". -,, . -,,J . -# ."' ... ;... . '



".~ ~WUWWW~Y~ V'~ U~W~ ~ Y~V~.'~*- ~ ~ ~'b~ ~ - ~ ~ ~J ~ MI*

4

V

e
4

4'

4

- NEWLY INJECTED* PARTICLES

j

Fig. 9. Region of phase space which must be filled with new particl each time step.

4

I

'S.',s.AA t2~



WNW ww-vwvww-4,w

w
wp w

+

* z

I U

C',

c z

47,

b

w z
-A>



4.
C

Lii
0

4.
C

I-. -S.
- 0 .1
0 4. 9

I~~C A
U

.1*

x t
~1 *
LU CLa.i S

*0

-A.. LU U
p. 4 -

I '-FLU
I IL

* w 5
Hb4* j cn~ 9

LU A

I-
C

'p

* I 0
U

A.. .2
-U-- to -I

C LU
-J

A 0 1
I

* N 0.
*0~

- I
I-
0z

'IC 'pa

1%

-'p
I.

C
I,.If Lii
-p 0
-p
'I.

N

1%

RI

9*

9*



AW .. !W\ . . -W -W -W


